29 research outputs found

    Efficient Aggregation of Multiple Classes of Information in Wireless Sensor Networks

    Get PDF
    Congestion in a Wireless Sensor Network (WSN) can lead to buffer overflow, resource waste and delay or loss of critical information from the sensors. In this paper, we propose the Priority-based Coverage-aware Congestion Control (PCC) algorithm which is distributed, priority-distinct, and fair. PCC provides higher priority to packets with event information in which the sink is more interested. PCC employs a queue scheduler that can selectively drop any packet in the queue. PCC gives fair chance to all sensors to send packets to the sink, irrespective of their specific locations, and therefore enhances the coverage fidelity of the WSN. Based on a detailed simulation analysis, we show that PCC can efficiently relieve congestion and significantly improve the system performance based on multiple metrics such as event throughput and coverage fidelity. We generalize PCC to address data collection in a WSN in which the sensor nodes have multiple sensing devices and can generate multiple types of information. We propose a Pricing System that can under congestion effectively collect different types of data generated by the sensor nodes according to values that are placed on different information by the sink. Simulation analysis show that our Pricing System can achieve higher event throughput for packets with higher priority and achieve fairness among different categories. Moreover, given a fixed system capacity, our proposed Pricing System can collect more information of the type valued by the sink

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Analysis of a Prediction-based Mobility Adaptive Tracking Algorithm

    No full text
    Abstract — Target tracking in wireless sensor networks requires efficient coordination among sensor nodes. Existing methods have focused on tree-based collaboration, selective activation, and group clustering. This paper presents a prediction-based adaptive algorithm for tracking mobile targets. We use adaptive Kalman filtering to predict the future location and velocity of the target. This location prediction is used to determine the active tracking region which corresponds to the set of sensors that needs to be “lighted”. The velocity prediction is used to adaptively determine the size of the active tracking region, and to modulate the sampling rate as well. In this paper, we quantify the benefits of our approach in terms of energy consumed and accuracy of tracking for different mobility patterns. Our simulation results show that advance resource reservation coupled with adaptively changing the size of the active tracking region and the sampling rate reduces the overall energy consumed for tracking without affecting the accuracy in tracking

    Optimizing placement of beacons and data loggers in a sensor network - a case study

    No full text
    Localization and clustering of sensor nodes are important services in a sensor network since the nodes are typically deployed in an ad-hoc manner into an infrastructure-less terrain. When beacons are used for localization, there are two critical design issues: 1) to maximize the lifetime 1 of the beacons and 2) to maximize the coverage area. With clustering, the goal is to minimize the energy dissipation of the sensor network. In this paper, we consider the placement of beacons and data loggers (that act as cluster heads) in the Cosumnes River Preserve, which is a joint collaborative restoration project between the Cosumnes Research Consortium at University of California at Davis (UCD) and The Nature Conservancy. Currently, there are many types of sensors deployed in the preserve which are wired to dat
    corecore